ELSEVIER

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell

Wei Wang, Chao Su, Ran Ran, Zongping Shao*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, PR China

ARTICLE INFO

Article history: Received 19 November 2010 Received in revised form 16 December 2010 Accepted 16 December 2010 Available online 24 December 2010

Keywords: Solid-oxide fuel cells Nickel-alumina Anode catalyst layer Methane Carbon deposition Lanthanide promotion

ABSTRACT

The effect of lanthanide promoters on a Ni–Al₂O₃ catalyst for methane partial oxidation, steam reforming and CO₂ reforming at 600–850 °C is systematically investigated. The promoters include La₂O₃, CeO₂, Pr₂O₃, Sm₂O₃ and Gd₂O₃. GdNi–Al₂O₃ shows comparable catalytic activity to LaNi–Al₂O₃ and PrNi–Al₂O₃ but higher activity than CeNi–Al₂O₃ and SmNi–Al₂O₃ for all three reactions. The O₂–TPO results show that GdNi–Al₂O₃ possesses the best coke resistance among those tested. It also displays good stability at 850 °C for 300 h. Raman spectroscopy indicates that the addition of lanthanide promoters can reduce the degree of graphitization of the carbon deposited on Ni–Al₂O₃. The GdNi–Al₂O₃ is further applied as an anode functional layer in solid-oxide fuel cells operating on methane. The cell yields peak power densities of 1068, 996 and 986 mW cm⁻² at 850 °C, respectively, for operating on methane–O₂, methane–H₂O and methane–CO₂ gas mixtures, which is comparable to operating on hydrogen fuel. GdNi–Al₂O₃ is promising as a highly coking-resistant catalyst layer for solid-oxide fuel cells.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

As the main component of natural gas, coal-bed gas and biogas with huge reserves, methane is a clean fuel and also an important raw material for the synthesis of many important chemicals such as hydrogen and methanol. The conversion of methane to synthesis gas (syngas), a mixture of CO and H₂, is an important step toward the utilization of methane in chemical synthesis. Syngas can be produced from methane by catalytic partial oxidation $(CH_4 + 1/2O_2 = CO + 2H_2, \Delta H_{298 K} = -36 \text{ kJ mol}^{-1})$, steam reforming $(CH_4 + H_2O = CO + 3H_2, \Delta H_{298 K} = 206 \text{ kJ mol}^{-1})$, or CO₂ reforming $(CH_4 + CO_2 = 2CO + 2H_2, \Delta H_{298 K} = 247 \text{ kJ mol}^{-1})$. The above three reactions create products with different H₂ to CO ratios and are suitable for the synthesis of different chemicals [1].

Fuel cells are electrochemical devices that can directly convert chemical energy to electrical power with high efficiency and low emissions. Among the many types of fuel cells, solid oxide fuel cells (SOFCs), which typically operate at 500–1000 °C, have received particular attention recently. The elevated operational temperature allows for fuel flexibility. In principle, SOFCs can operate on any combustible fuel [2–6]. As the simplest hydrocarbon, methane is considered to be an attractive fuel for SOFCs because

it has several advantages such as ease and safety of storage and also being handled and delivered with the existing supply infrastructure. Nickel cermets are the most commonly used anodes in hydrogen-fueled SOFCs due to their high electrochemical activity for hydrogen electro-oxidation and long-term stability at SOFC operating conditions [7,8]. However, they suffer from a number of drawbacks when operating on hydrocarbon fuels, notably carbon deposition, which covers the active sites of the anodes and causes rapid and irreversible cell deterioration. To overcome those disadvantages, substantial efforts have been devoted to the development of new non-nickel anode materials in recent years [9-12]. The most investigated materials include copper-based cermet and perovskite-type oxides. However, those materials decreased not only the carbon deposition rate but also the electrochemical activity for hydrocarbon oxidation. The modification of conventional nickel cermet anodes has also been tried and is more advisable due to its simplicity. Recently, the Barnett group successfully directly operated SOFCs with a conventional nickel cermet anode on methane, propane and other hydrocarbons without pre-reforming by modification of the anode with a Ru-CeO₂ functional layer [13-15]. However, Ru is expensive, making it less attractive for practical applications.

Some supported group VIII metals are known to be good catalyst candidates for methane conversion reactions to give a high yield of syngas at elevated temperatures [16–20]. Very recently, we have demonstrated that a cost-effective Ni–Al₂O₃ catalyst presented

^{*} Corresponding author. Tel.: +86 25 8317 2256; fax: +86 25 8317 2256. *E-mail address:* shaozp@njut.edu.cn (Z. Shao).

^{0378-7753/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2010.12.072

good catalytic activity comparable to Ru–CeO₂. When operating on methane-containing fuels, the fuel cell with a Ni–Al₂O₃ anode functional layer yielded high power output comparable to that with hydrogen. In addition, the Ni–Al₂O₃ catalyst layer showed much better thermal–mechanical compatibility with the cermet anode than Ru–CeO₂ [21,22].

As mentioned, one practical problem with a nickel-based catalyst is the coke-induced deactivation. It is thought that metal oxides alter the activity of the supported metal catalysts depending on the nature of the additives. Catalyst modification can cause the blockage of active sites on the metal surface or changes in the electronic character or geometric structure of the catalyst surface, thus changing the reactivity by interacting with the substrate to alter its mode of adsorption [23]. There is evidence in the literature indicating an improvement in the catalytic activity of Ni-based catalysts in hydrocarbon steam/CO₂ reforming and partial oxidation with the addition of lanthanide elements [24-30]. Zhuang et al. and Wang et al. have investigated the effect of cerium oxide as a promoter in supported Ni catalysts for methane steam and CO₂ reforming [24,25]. There was a beneficial effect with not only a decrease in the carbon deposition rate but also an increase in the reforming activity. The researchers believed that the cerium oxide accelerated the reaction of steam with the adsorbed species on the nickel surface and thus decreased the carbon deposition rate as well as increased or maintained the high catalytic activity. Yang et al. have reported that La₂O₃ and CeO₂ co-promoted Ni-Al₂O₃ catalyst for the methane CO2 reforming reaction. Not only was the amount of carbon deposition decreased, but the activity was also improved slightly using the Ni/ γ -Al₂O₃ with the La₂O₃-CeO₂ binary promoters, due to the alkaline function and dispersion action of La_2O_3 -CeO₂ as well as the electronic interactions between CeO₂ and Ni [31].

In our previous work, we have demonstrated that a lithium and lanthanum co-promoted Ni–Al₂O₃ catalyst has an excellent catalytic activity for the partial oxidation, steam and CO₂ reforming of methane between 600 and 850 °C and good coking resistance and operational stability [32]. In this study, the effect of lanthanide promoters on the catalytic activity of the Ni–Al₂O₃ catalyst for methane reforming and partial oxidation reactions and coke resistance was systematically investigated. The Gd-modified Ni–Al₂O₃ catalyst was further investigated as an anode functional layer operating under real fuel cell conditions with methane as the fuel.

2. Experimental

2.1. Synthesis and fabrication

All of the catalyst powders were synthesized using a glycine nitrite process (GNP), which was described previously [33]. The resultant primary powders from the direct combustion were further calcined at 850 °C for 5 h in static air to obtain the desired catalysts. After cooling to room temperature, the powder was pressed into disk-shaped pellets and then crushed to small grains with the desired particle size for the catalytic tests.

The fuel cell materials included a $La_{0.8}Sr_{0.2}MnO_3$ (LSM) cathode, a $(Y_2O_3)_{0.1}(ZrO_2)_{0.9}(YSZ)$ electrolyte and a NiO+YSZ anode (NiO:YSZ=60:40, by weight). The LSM was synthesized using a standard combined EDTA-citrate complexing sol-gel process with metal nitrates (analytical reagents) applied as the raw materials [34], while the NiO and YSZ used for the anode were commercial products (Chengdu Shudu Nano-science Co., Ltd. for NiO and Tosoh for YSZ). The disk-shaped anode substrates were first prepared using a tape-casting technique. The green anode pellets were fired at 1100 °C for 2 h in air to release the organic solvents and to create the proper mechanical strength for the substrate. The YSZ

colloidal suspension was prepared by dispersing a fine YSZ powder into a solution of ethylene glycol (5 wt.% solids content) through high-energy ball milling (Fritsch, Pulverisette 6), which was then spray deposited onto the anode substrates. The obtained green anode–electrolyte dual layer half-cells were sintered at 1400 °C for 5 h in air. The LSM + YSZ composite cathode (70:30, by weight) was deposited on the sintered electrolyte surface and then fired at 1100 °C for 2 h in air. To prepare the catalyst layer, a slurry of the catalyst powder was first prepared and then was screen-painted onto the outer surface of the anode layer and sintered at 850 °C for 1 h.

2.2. Catalytic evaluation

The catalytic activity of the lanthanide-promoted Ni-Al₂O₃ catalysts was tested in a flow-through type fixed-bed quartz-tube reactor with an inner diameter of about 8 mm. About 0.2 g of the catalyst particles in the size range of a 40-60 mesh were placed into the middle of the reactor. The gas mixtures were fed into the reactor at the flow rates of $CH_4/O_2/He = 10/5/80$, $CH_4/H_2O/He = 10/10/80$ and $CH_4/CO_2/He = 10/10/80 \text{ ml min}^{-1}$ [STP] for the partial oxidation, steam reforming and CO₂ reforming of methane, respectively. The gases, controlled by AFC 80MD digital mass flow controllers (Qualiflow), were introduced to the top of the reactor. Compositional analysis of the effluent gases from the bottom of the reactor was performed with a Varian 3800 gas chromatograph, which was equipped with Hayesep Q, Poraplot Q and 5 Å sieve molecular capillary columns and a thermal conductivity detector (TCD) for the separation and detection of H₂, O₂, CO, CO₂ and CH₄. The catalytic reactions were performed at 600-850 °C. The conversion of methane (X(%)) during the partial oxidation and steam reforming of methane was calculated according to Eq. (1). Alternatively, the conversion of methane during CO₂ reforming was calculated according to Eq. (2), and the selectivity of CO (S(%)) was calculated according to Eq. (3). The H₂ to CO ratios (R) were calculated according to Eqs. (4)–(6) for partial oxidation, steam reforming and CO₂ reforming of methane, respectively:

$$X(\%) = \frac{[CO] + [CO_2]}{[CO] + [CO_2] + [CH_4]} \times 100\%$$
(1)

$$X(\%) = \frac{0.5 \times [\text{CO}]}{0.5 \times [\text{CO}] + [\text{CH}_4]} \times 100\%$$
(2)

$$S(\%) = \frac{[CO]}{[CO] + [CO_2]} \times 100\%$$
(3)

$$R = \frac{4}{S_{[CO]}\%} - \frac{1}{S_{[CO]}\% \times X_{[CH_4]}\%} - 1$$
(4)

$$R = \frac{4}{S_{\rm [CO]}\%} - 1 \tag{5}$$

$$R = \frac{4 \times X_{[CH_4]}\%}{S_{[CO]}\% + S_{[CO]}\% \times X_{[CH_4]}\%} - 1$$
(6)

2.3. Characterizations

Hydrogen temperature-programmed reduction (H₂-TPR) was used to identify the chemical interaction between the nickel and the support and/or the promoters. Approximately 0.03 g of catalyst particles were put in a U-type quartz reactor with an inner diameter of about 3 mm. The sample was pretreated under a pure argon atmosphere at a flow rate of 30 ml min⁻¹ [STP] at 400 °C for 30 min. After cooling to room temperature, the atmosphere was switched to 10 vol.% H₂/Ar, and the reactor was programmatically heated to 930 °C at a rate of 10 °C min⁻¹. The hydrogen consumption was monitored by an in situ TCD detector with a BELCAT-A apparatus. To test the coke resistance of the lanthanide-promoted Ni–Al₂O₃ catalysts, about 0.2 g of catalyst particles were first placed in a flowthrough type quartz-tube reactor and treated at 850 °C under a pure methane atmosphere at a flow rate of 40 ml min⁻¹ [STP] for 5 min and then cooled to room temperature in a helium atmosphere. After the treatment, approximately 0.05 g of powder was placed into a U-type quartz reactor with an inner diameter of about 3 mm. Pure oxygen (for oxygen temperature-programmed oxidization, O₂-TPO) at a flow rate of 20 ml min⁻¹ [STP] was then introduced to the top of the reactor. After flowing with the gas at room temperature for about 30 min to stabilize the baseline, the reactor was heated to 800 °C at a rate of $10 °C min^{-1}$. The deposited carbon on the catalyst surface was gradually oxidized to CO₂. The effluent gas from the reactor was connected to a mass spectrometer (MS, Hiden QIC-20) for in situ monitoring of CO₂.

The CO₂-TPD process was performed to test the surface basicity of the catalysts. The samples were first reduced in hydrogen at 850 °C for 1 h, cooled to room temperature, and then exposed to CO₂ (20 ml min⁻¹) for 2 h. The treated samples were purged with Ar at room temperature for 1 h and heated linearly at 10–800 °C in a flowing Ar atmosphere at 20 ml min⁻¹. The CO₂ signal was monitored and recorded continuously as a function of the temperature by the MS.

The phase structures of the various samples were examined using an X-ray diffractometer (XRD, ARL X' TRA) equipped with a Cu K α radiation ($\lambda = 0.1541$ nm). The BET specific surface area of the catalysts was characterized by N₂ adsorption at liquid nitrogen temperature using a surface area analyzer (BELSORP II, Japan). Prior to nitrogen adsorption, the sample was degassed at 300 °C for 2.0 h to remove any physically adsorbed species. The surface area was determined from the linear portion of the BET equation. The laser Raman spectroscopy of the various catalysts after treated at 850 °C under a pure CH₄ atmosphere for 5 min was obtained in an HR800 UV Raman microspectrometer (JOBIN YVON, France) using the green line of an argon laser ($\lambda = 514.53$ nm) as the excitation source. The cross-sectional morphologies of the fuel cells were examined using an environmental scanning electron microscope (ESEM, QUANTA-200).

The *I–V* polarization curves of the fuel cells measured at 650–850 °C were obtained using a Keithley 2420 source meter in 4-probe mode. During the measurements, hydrogen, CH_4-O_2 , CH_4-H_2O or CH_4-CO_2 gas mixtures were fed into the anode chamber and ambient air was served as the oxidant gas at in the cathode chamber. The flow rate of hydrogen and methane was maintained at 80 ml min⁻¹ [STP].

3. Results and discussion

3.1. Basic properties

The development of active and stable catalysts for methane conversion to syngas is critical for methane utilization in chemical synthesis. On the other hand, an ideal material for the anode functional layer of SOFCs operating on methane should possess high activity for all three reactions (partial oxidation, steam reforming and CO₂ reforming of methane) because the CO₂, and H₂O could co-present with the methane under polarization by introducing methane and oxygen as the anode feed gases. We have previously demonstrated that a Ni–Al₂O₃ (7 wt.% Ni) catalyst prepared by a glycine nitrate combustion process had good activity for the afore-mentioned three reactions at intermediate temperatures. To further improve the catalytic performance, a series of lanthanides (La₂O₃, CeO₂, Pr₂O₃, Sm₂O₃ and Gd₂O₃) were applied as promoters to modify the Ni–Al₂O₃, Cmi–Al₂O₃, SmNi–Al₂O₃ and

Fig. 1. The XRD patterns of the various catalysts after calcination at 850 °C.

GdNi-Al₂O₃ were prepared by the same combustion method, and for comparison, Ni-Al₂O₃ was also synthesized. In all six catalysts, the nickel content was fixed at 15 wt.% and the molar ratio of promoters to nickel was fixed at 0.12:1. The contents of the promoters were 5.00, 5.28, 5.06, 5.35 and 5.56 wt.% for LaNi-Al₂O₃, CeNi-Al₂O₃, PrNi-Al₂O₃, SmNi-Al₂O₃ and GdNi-Al₂O₃, respectively. It is interesting that all of the catalysts were light blue in color except for the CeNi-Al₂O₃, which was light green. The XRD results are shown in Fig. 1. As shown, the γ -Al₂O₃ and NiAl₂O₄ phases were detected in all of the samples. No other phase like NiO was observed in the LaNi-Al₂O₃, PrNi-Al₂O₃, SmNi-Al₂O₃ and GdNi-Al₂O₃. These results suggest that the La, Pr, Sm and Gd oxides were all well-dispersed within the catalysts. However, the CeO₂ phase was detected in the CeNi-Al₂O₃, which agreed well with the literature [31,35]. This result implies that CeO₂ likely did not enter into the bulk phase of the Ni-Al₂O₃ catalysts. The existence of the vellowish-color CeO₂ should explain the green color of CeNi-Al₂O₃.

The specific surface areas were determined using the nitrogen adsorption method at the liquid nitrogen temperature and were 51.3, 69.5, 79.0, 52.7, 56.2 and $68.3 \text{ m}^2 \text{ g}^{-1}$ for LaNi–Al₂O₃, CeNi-Al₂O₃, PrNi-Al₂O₃, SmNi-Al₂O₃, GdNi-Al₂O₃ and Ni-Al₂O₃, respectively. These findings indicate that the promoters affected the specific surface area of the catalysts. It has been reported that a maximum BET surface area of La₂O₃/Al₂O₃ composites exists, changing with the La₂O₃ loading (La/Al ratio). However, the La/Al ratio having the maximum BET value varies between investigations depending on the different preparation conditions [36,37]. Chen et al. found that the specific surface area of the La₂O₃-promoted Al₂O₃ samples was higher than that of the pure Al₂O₃ sample when $La/Al \le 0.02$ and that the maximum specific surface area was achieved at a La/Al atomic ratio of 0.02. For La/Al \geq 0.05, the specific surface areas of the La₂O₃-promoted aluminum samples decreased rapidly with the increase in the La/Al atomic ratio [36]. Roh et al. also reported that the largest specific surface area of a LaNi-Al₂O₃ catalyst was obtained at the La/Al atomic ratio of 0.02 [38], while Haack et al. have reported that the maximum specific surface area was achieved at a La/Al atomic ratio of 0.15 [37]. In this study, the specific surface area of LaNi-Al₂O₃ (La/Al=0.022) was relatively smaller than that of Ni-Al₂O₃, which was different from the literature cited above. This phenomenon may be attributable to the different preparation method we used in this study. The specific surface area of the CeNi-Al₂O₃ was very close to the Ni-Al₂O₃. Wang et al. have demonstrated the effect of different cerium contents on the specific surface areas of the CeO₂-promoted Ni-Al₂O₃ catalysts, and the specific surface area of Ni-1 wt.% CeO₂-Al₂O₃ was slightly higher than that of the unpromoted Ni-Al₂O₃ catalyst, while Ni–5 wt.% CeO_2 –Al₂O₃ has about the same specific surface

Fig. 2. The H₂-TPR profiles of the LaNi-Al₂O₃, CeNi-Al₂O₃, PrNi-Al₂O₃, SmNi-Al₂O₃, GdNi-Al₂O₃ and Ni-Al₂O₃ catalysts.

area as that of Ni–Al₂O₃ [25]. In this study, the content of CeO₂ was 5.28 wt.%, and thus, the surface area results agree well with the literature. Guo et al. have reported on the effect of the Gd_2O_3 content on the BET surface area in a Ni–SiO₂ system [39]. The authors believed that the surface area of Ni–SiO₂ decreased with the addition of Gd_2O_3 . Our results with the Gd-promoted Ni–Al₂O₃ catalyst showed the same trend as their observations, although the supports were different.

The chemical interaction between the nickel and the support and/or the promoters was characterized by H2-TPR. Fig. 2 shows the H₂-TPR profiles of the various catalysts. The reduction peak temperature of the free NiO during the H₂-TPR process was reported to be around 330 °C [40]. With the increase in the chemical interaction between the NiO and the support or promoters, a shift of the reduction peak to higher temperatures was expected. The reduction peak temperatures of the six catalysts were all higher than 800 °C, suggesting a strong interaction between the nickel and the support $(\gamma - Al_2O_3)$ or the promoters in the various catalysts synthesized by the GNP method. Such interaction could effectively suppress the grain growth of the NiO phase that is beneficial for increasing the catalytic activity of the catalysts. The peak temperatures were 832, 823, 832, 832, 833 and 823 °C for the LaNi–Al₂O₃, CeNi–Al₂O₃, PrNi-Al₂O₃, SmNi-Al₂O₃, GdNi-Al₂O₃ and Ni-Al₂O₃, respectively. These findings indicate that the lanthanide additives could affect the metal-support interaction with the exception of the CeO₂ additive. The same peak reduction temperatures of CeNi-Al₂O₃ and Ni-Al₂O₃ can be explained by the lack of a strong chemical interaction between the CeO₂ and the support as demonstrated by the XRD.

3.2. Catalytic performance

Fig. 3 shows the methane conversion and CO selectivity for the LaNi–Al₂O₃, CeNi–Al₂O₃, PrNi–Al₂O₃, SmNi–Al₂O₃ and GdNi–Al₂O₃ catalysts for the partial oxidation, steam reforming and CO₂ reforming of methane with the methane to O₂, H₂O and CO₂ ratios of 2:1, 1:1 and 1:1, respectively. All five of the catalysts showed favorable catalytic activity for the three reactions at high temperatures (750–850 °C), which may be attributable to the relatively strong interaction between the NiO and the support. However, a decrease in the operational temperature led to different activities. Table 1 lists the detailed methane conversion over the five catalysts at 600 °C. It shows that the catalytic activities of the CeNi–Al₂O₃ and SmNi–Al₂O₃ catalysts were a little lower than those of the PrNi–Al₂O₃, LaNi–Al₂O₃ and GdNi–Al₂O₃ catalysts. For example, the CH₄ conversion over the GdNi–Al₂O₃ catalyst reached 86.2, 77.7 and 75.4% for the methane partial oxidation, steam and

Fig. 3. The catalytic activity of the LaNi–Al₂O₃, CeNi–Al₂O₃, PrNi–Al₂O₃, SmNi–Al₂O₃, GdNi–Al₂O₃ catalysts for (a) partial oxidation (CH₄:O₂ = 2:1), (b) steam reforming (CH₄:H₂O = 1:1) and (c) CO₂ reforming (CH₄:CO₂ = 1:1) (solid symbol: CH₄ conversion; open symbol: CO selectivity).

Table 1

Methane conversion during the partial oxidation, steam reforming, and CO₂ reforming of methane at $600 \degree C$ over LaNi–Al₂O₃, CeNi–Al₂O₃, SmNi–Al₂O₃, PrNi–Al₂O₃ and GdNi–Al₂O₃.

Catalysts	CH ₄ conversion		
	Partial oxidation	Steam reforming	CO ₂ reforming
LaNi-Al ₂ O ₃	85.1%	78.6%	74.4%
CeNi-Al ₂ O ₃	82.7%	71.8%	71.4%
PrNi-Al ₂ O ₃	85.0%	79.4%	75.7%
SmNi-Al ₂ O ₃	81.1%	72.3%	72.4%
GdNi-Al ₂ O ₃	86.2%	77.7%	75.4%

Table 2

 $\rm H_2$ to CO ratios for the partial oxidation, steam reforming, and CO₂ reforming of methane at 600–850 $^\circ$ C over LaNi–Al₂O₃, CeNi–Al₂O₃, PrNi–Al₂O₃, SmNi–Al₂O₃ and GdNi–Al₂O₃.

Catalyst	Temperature (°C)	H ₂ to CO ratios		
		Partial oxidation	Steam reforming	CO ₂ reforming
LaNi-Al ₂ O ₃	850	2.07	3.09	1.03
	800	2.11	3.16	1.03
	750	2.14	3.17	1.04
	700	2.19	3.34	1.05
	650	2.26	3.79	1.01
	600	2.45	4.30	1.03
CeNi-Al ₂ O ₃	850	2.02	3.03	1.02
	800	2.03	3.04	1.01
	750	2.06	3.10	1.00
	700	2.09	3.21	0.99
	650	2.17	3.39	0.98
	600	2.36	3.95	0.99
PrNi-Al ₂ O ₃	850	2.02	3.15	1.03
	800	2.08	3.29	1.02
	750	2.09	3.48	1.02
	700	2.13	3.49	1.02
	650	2.22	3.62	1.01
	600	2.46	4.33	1.03
SmNi-Al ₂ O ₃	850	2.13	3.15	1.01
	800	2.17	3.29	1.00
	750	2.19	3.40	0.97
	700	2.19	3.40	1.00
	650	2.12	3.54	0.99
	600	2.31	3.91	1.01
GdNi-Al ₂ O ₃	850	2.02	3.04	1.01
	800	2.03	3.06	1.00
	750	2.04	3.17	1.05
	700	2.18	3.40	1.03
	650	2.27	3.57	1.03
	600	2.50	4.13	1.05

CO₂ reforming reactions, respectively, while they were 82.7, 71.8 and 71.4%, respectively, over the CeNi–Al₂O₃ catalyst.

The H₂ to CO ratio is an important factor to evaluate the catalysts during the syngas production reactions of methane [41-46]. The H₂ to CO ratios of the five catalysts in the methane partial oxidation, steam and CO₂ reforming reactions in this study are listed in Table 2. The H_2 to CO ratios of all the catalysts at 750–850 $^\circ$ C were near the theoretical values of 2.0, 3.0 and 1.0 for the methane partial oxidation, steam reforming and CO₂ reforming reactions, respectively. The H₂ to CO ratios could meet the different requirements for the production of many chemicals, such as HCHO and CH₃COOH. The H₂ to CO ratios increased with decreasing reaction temperatures for the methane partial oxidation and steam reforming reactions and the H₂ to CO ratio almost remained stable for the CO₂ reforming reaction. Liu et al. have reported similar results for the methane partial oxidation reaction [45]. Daza et al. have demonstrated that the H₂ to CO ratios almost remained stable for the CO₂ reforming reaction, which agrees with our results [46].

3.3. Carbon deposition

The catalyst stability for the methane conversion is closely related to the coke formation. Previously, we have demonstrated that the LiLaNi–Al₂O₃ (7 wt.% Ni) catalyst had better coke resistance than the Ni–Al₂O₃ [32]. The carbon deposition behavior of the lanthanide-promoted Ni–Al₂O₃ catalysts was then investigated. Fig. 4 shows the corresponding O₂-TPO profiles of the catalysts after treatment in methane at 850 °C. The CO₂ peak areas were 1.76×10^{-6} , 1.98×10^{-6} , 2.35×10^{-6} , 1.44×10^{-6} , 1.23×10^{-6} and 5.63×10^{-6} for LaNi–Al₂O₃, CeNi–Al₂O₃, PrNi–Al₂O₃, SmNi–Al₂O₃,

Fig. 4. The O₂-TPO profiles of the LaNi–Al₂O₃, CeNi–Al₂O₃, PrNi–Al₂O₃, SmNi–Al₂O₃ and GdNi–Al₂O₃ catalysts after treatment in pure methane for 5 min at 850 $^{\circ}$ C.

GdNi-Al₂O₃ and Ni-Al₂O₃, respectively. The area of the CO₂ peak reflects the amount of carbon deposited on the catalysts, which was quantitatively determined by applying pure SrCO₃ as an external standard substance. Table 3 shows the area-specific carbon formation rates over the various catalysts. These results indicated that the introduction of lanthanides to the Ni-Al₂O₃ catalyst increased the coking resistance. The GdNi-Al₂O₃ catalyst had the best coking resistance. It is interesting that CeNi-Al₂O₃ was very different from the other four catalysts. This phenomenon may be because the CeO₂ did not enter the bulk phase in the catalyst, as evidenced by the XRD and TPR characterizations. The coke resistance regulation in the LaNi-Al₂O₃, PrNi-Al₂O₃, SmNi-Al₂O₃ and GdNi-Al₂O₃ catalysts agreed with the ionic radius of the corresponding promoter elements. Some promoters could create a steric effect, such as blocking certain catalytic sites or the adsorption/desorption modes of specific molecular geometries on the surface of the catalyst. The amount of deposited carbon also depended on the difference between the carbenium adsorption and desorption rates. The amount of adsorbed carbenium was controlled by the thermodynamic process. The desorption rate of the carbenium on the catalyst should be affected by the structure of the catalyst. It has been reported that the carbon deposition property of the supported catalyst is related to the steric hindrance of the catalyst [47]. The Gd³⁺ had the smallest ionic radius of 0.94 Å of the five elements in this study and the good coke resistance of GdNi-Al₂O₃ should be attributable to the steric effect of the promoter.

To investigate the structures of the deposited carbon, the laser Raman spectroscopy of the five carbon-deposited samples were measured. As shown in Fig. 5, the Raman spectra showed two intense bands, with the first one at $1350 \,\mathrm{cm}^{-1}$ (usually called the D-band) associated with the disorder structure of carbon and the second one at $1580 \,\mathrm{cm}^{-1}$ (usually called the G-band) assigned to the in-plane vibrations of the carbon atoms in hexagonal sheets [48]. The graphitization degree of the deposited carbon was related to the integrated intensity ratio in the form of $R(I_D/I_G)$ [49]. According to the literature, the *R*-values should decrease with the increasing carbon graphitization degree [50]. The *R*-values of the deposited

Table	3
-------	---

BET and carbon formation rates of the various catalysts under methane atmosphere.

Catalysts	BET $(m^2 g^{-1})$	Carbon formation rate (10 ⁻⁵ mol m ⁻² min ⁻¹)
LaNi-Al ₂ O ₃	51.3	1.20
CeNi-Al ₂ O ₃	69.5	1.00
PrNi-Al ₂ O ₃	79.0	1.05
SmNi-Al ₂ O ₃	52.7	0.97
GdNi-Al ₂ O ₃	56.2	0.77
Ni-Al ₂ O ₃	68.3	2.92

Fig. 5. The Raman spectra of the LaNi–Al₂O₃, CeNi–Al₂O₃, PrNi–Al₂O₃, SmNi–Al₂O₃ and GdNi–Al₂O₃ catalysts after treatment in pure methane for 5 min at 850 $^{\circ}$ C.

carbon over the LaNi–Al₂O₃, CeNi–Al₂O₃, PrNi–Al₂O₃, SmNi–Al₂O₃, GdNi–Al₂O₃ and Ni–Al₂O₃ at 850 °C were 1.63, 1.32, 1.38, 1.21, 1.05 and 0.86, respectively. These findings indicate that the addition of various lanthanides could effectively decrease the graphitization degree of the carbon deposited over the catalysts.

To further exploit the coke resistance of the GdNi-Al₂O₃ catalyst, the catalyst was treated in pure methane at various temperatures and then subjected to the O₂-TPO analysis. Fig. 6 presents the O2-TPO profiles of the GdNi-Al2O3 catalyst after treatment in methane at 650–850°C. The CO₂ peak areas were 1.23×10^{-6} , 2.52×10^{-6} , 3.60×10^{-6} , 7.85×10^{-6} , 1.10×10^{-5} at 850, 800, 750, 700 and 650 $^\circ\text{C},$ respectively. The area-specific carbon formation rates of the corresponding temperatures were 7.70×10^{-6} , 1.58×10^{-5} , 2.26×10^{-5} , 4.92×10^{-5} and 6.90×10^{-5} mol m⁻² min⁻¹, respectively. These results indicate an increase in the coke formation rate with a decrease in the reaction temperature for the GdNi-Al₂O₃ catalyst. Based on the hydrocarbon cracking reaction thermodynamics, an increase in the reaction temperature should not cause a decrease in the rate of coke formation. However, coke is the product of the inter-reactions between carbenium ions on the catalyst surface. Thus, due to an increase in the desorption rate, fewer carbenium ions were present on the catalyst surface at high temperatures. As a result, the rate of coke formation decreased with an increase in temperature [51].

It is well known that an acidic catalyst surface favors carbon deposition, while a basic one suppresses carbon deposition [52]. To test the surface basicity of the lanthanide-promoted Ni–Al₂O₃ catalysts, the CO₂-TPD process was performed. Fig. 7 shows the corresponding CO₂-TPD profiles of the GdNi–Al₂O₃ and Ni–Al₂O₃

Fig. 6. The $O_2\text{-}TPO$ profiles of the GdNi–Al_2O_3 catalyst after treatment in pure methane for 5 min at 650–850 $^\circ\text{C}.$

Fig. 7. The CO_2 -TPD profiles of the Ni–Al₂O₃ and GdNi–Al₂O₃ catalysts after treatment in pure CO_2 for 2 h at room temperature.

catalysts. No absorption peak existed at the region above 600 °C, which implied that no carbonate was produced in our CO₂-TPD process. The CO₂ peak areas were 1.22×10^{-7} and 4.53×10^{-7} for the Ni–Al₂O₃ and GdNi–Al₂O₃, respectively. Thus, the GdNi–Al₂O₃ catalyst had a higher surface basicity than the Ni–Al₂O₃. This result showed that the good coke resistance of the GdNi–Al₂O₃ should be attributable to the steric effect of the Gd₂O₃ promoter and the large surface basicity of the catalyst.

3.4. Long-term catalyst stability

To evaluate the operational stability, the GdNi-Al₂O₃ catalyst was tested for methane partial oxidation under the conditions of $CH_4:O_2 = 2:1$ at 850 °C for a period of 300 h. Fig. 8 shows the corresponding methane conversion and the H₂ to CO ratio. The methane conversion was stable at approximately 99% and the H_2 to CO ratio stayed around 2.0 during the 300 h operation. The catalytic deactivation of the γ -Al₂O₃-supported catalysts during high-temperature operations is typically due to the thermal deterioration of the γ -Al₂O₃ support, i.e., the sintering and phase transformation into the low-surface area α -Al₂O₃ [53]. Rare earth metal oxides could prevent the alumina support from thermal deterioration [54]. The rare earth oxides also have a high oxygen storage capacity and can absorb or release oxygen reversibly in response to the oxygen concentration in the gas-phase [55]. Their presence shows beneficial effects on the catalyst performance, such as improving the dispersion of the active species and delaying the transition of the alumina support from γ -Al₂O₃ to α -Al₂O₃ [56,57]. The strong interaction between the NiO species and the Al₂O₃, the good coking resistance

Fig. 8. The time dependence of methane conversion and the H_2 to CO ratio under CH₄:O₂ = 2:1 conditions at 850 °C for the GdNi–Al₂O₃ catalyst.

Fig. 9. The *I–V* and *I–P* curves of the fuel cells with the GdNi–Al₂O₃ catalyst layer operating on a mixed gas composed of (a) pure hydrogen, (b) 80% CH₄ and 20% O_2 , (c) 66.7% CH₄ and 33.3% H₂O, and (d) 66.7% CH₄ and 33.3% CO₂ at different temperatures.

Fig. 10. The time dependence of the voltage and power density under a specific current density (600 mA cm^{-2}) at 750 °C of the fuel cell with the GdNi–Al₂O₃ catalyst layer operating on methane–oxygen gas mixtures as fuel.

and the high surface basicity of GdNi–Al₂O₃, as evidenced by the H_2 -TPR, O_2 -TPO and CO_2 -TPD results, largely contributed to the excellent stability of the GdNi–Al₂O₃ catalyst.

3.5. Single cell performance

The GdNi-Al₂O₃ catalyst was then investigated as the anode functional layer in a single cell. Fig. 9 shows the I-V and I-P curves of the fuel cell operating on a methane-O₂ gas mixture, a methane-H₂O gas mixture and a methane-CO₂ gas mixture. The methane to O₂, H₂O and CO₂ ratios were 4:1, 2:1 and 2:1, respectively. By applying the methane- O_2 gas mixtures as the fuel, the cell delivered peak power densities of 1068, 832, 618, 450 and $285\,mW\,cm^{-2}$ at 850, 800, 750, 700 and 650 $^\circ\text{C},$ respectively, while they were 1054, 805, 580, 413 and 247 mW cm⁻² when pure hydrogen was applied as the fuel. These results showed that the cell power outputs were similar for operating on methane-O₂ fuel and hydrogen fuel. The cell delivered similar power outputs by operating on methane-H₂O or methane-CO₂ gas mixtures. For example, the peak power densities at $850 \degree C$ were 996 or $986 \ mW \ cm^{-2}$ when methane-H₂O or methane-CO₂ gas mixtures served as fuels, respectively. These results indicate that the catalyst layer had suf-

Fig. 11. The cross-sectional SEM images of the GdNi–Al₂O₃ catalyst–anode interface after the cell performance and stability test.

ficient catalytic activity for the partial oxidation, steam reforming and CO₂ reforming of methane.

The cell stability with the GdNi-Al₂O₃ catalyst layer under a specific current density at 750 °C was then investigated. As shown in Fig. 10, methane $-O_2$ gas mixtures (CH₄: $O_2 = 4:1$) were investigated as the cell fuel. Under a current density of 600 mA cm⁻², the voltage was stable at about 0.70 V during the entire 400 min test and the corresponding power density was stable at about 420 mW cm⁻². This good stability should contribute to the excellent coking resistance of the GdNi-Al₂O₃ catalyst, as evidenced by the O₂-TPO results.

The SEM image of the fuel cell after the cell performance and stability test between 650 and 850 °C under different fuel conditions for a period of 15 h is shown in Fig. 11. The catalyst layer still adhered to the anode surface fairly well. The above results indicate that the coking resistant GdNi-Al₂O₃ catalyst can be used as the functional layer of SOFCs operating on methane fuel.

4. Conclusions

The combustion-synthesized lanthanide-promoted Ni-Al₂O₃ catalysts had good catalytic activity for the partial oxidation, steam reforming and CO₂ reforming of methane at elevated temperatures. The catalytic activity of the GdNi–Al₂O₃ was comparable to those of the LaNi-Al₂O₃ and PrNi-Al₂O₃ catalysts but was higher than those of the CeNi-Al₂O₃ and SmNi-Al₂O₃ catalysts. The strong interaction between the NiO and the support accounted for the high activity of the catalysts. The GdNi-Al₂O₃ catalyst also presented the best coke resistance under pure methane conditions among all of the catalysts, and it remained stable under the conditions of CH₄:O₂ = 2:1 for 300 h at 850 °C. A fuel cell with a GdNi–Al₂O₃ catalyst layer yielded high cell performance when operating on methane-O₂, methane-H₂O or methane-CO₂ gas mixtures. The cell with the GdNi-Al₂O₃ catalyst layer was stable when operating on methane-O₂ mixtures at 750 °C for 400 min. The excellent catalytic activity and stability and the high coking resistance of GdNi–Al₂O₃ indicate a promising application as the catalyst layer in SOFCs operating on methane.

Acknowledgements

This work was supported by the "National Science Foundation for Distinguished Young Scholars of China" under contract No. 51025209, by the "Outstanding Young Scholar Grant at Jiangsu Province" under contract No. 2008023, by the program for New Century Excellent Talents (2008), and by the Fok Ying Tung Education Foundation under contract No. 111073.

References

- [1] I. Wender, Fuel Process. Technol. 48 (1996) 189-297.
- [2] W. Zhou, Z.P. Shao, R. Ran, W.Q. Jin, N.P. Xu, Chem. Commun. 44 (2008) 5791-5793.
- [3] T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, M. Sano, Science 288 (2000) 2031-2033.
- [4] A. Wojcik, H. Middleton, I. Damopoulos, J. Van herle, J. Power Sources 118 (2003) 342-348.
- [5] Y.Z. Wu, C. Su, C.M. Zhang, R. Ran, Z.P. Shao, Electrochem. Commun. 11 (2009) 1265-1268
- [6] C. Su, Y.Z. Wu, W. Wang, Y. Zheng, R. Ran, Z.P. Shao, J. Power Sources 195 (2010) 1333-1343.

- [7] S.P. Jiang, S.H. Chan, Mater. Sci. Technol. 20 (2004) 1109-1118.
- [8] S.P. Jiang, S.H. Chan, J. Mater. Sci. 39 (2004) 4405-4439.
- [9] C. Lu, W.L. Worrell, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 150 (2003) A1357-A1359.
- [10] H.P. He, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 150 (2003) A1470-A1475.
- [11] Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Science 312 (2006) 254-257.
- [12] S.W. Tao, J.T.S. Irvine, Nat. Mater. 2 (2002) 320-323.
- [13] Z.L. Zhan, Y.B. Lin, M. Pillai, I. Kim, S.A. Barnett, J. Power Sources 161 (2006) 460-465.
- [14] Z.L. Zhan, S.A. Barnett, Solid State Ionics 176 (2005) 871-879.
- [15] Z.L. Zhan, S.A. Barnett, Science 308 (2005) 844-847
- [16] A.T. Ashcroft, A.K. Cheetham, M.L.H. Green, P.D.F. Vernon, Nature 352 (1991) 225-226
- [17] P.D.F. Vemon, M.L.H. Green, A.K. Cheetham, A.T. Ashcroft, Catal. Today 13 (1992) 417-426
- [18] K. Asami, X.H. Li, K. Fujimoto, Y. Koyama, A. Sakurama, N. Kometani, Y. Yonezawa, Catal. Today 84 (2003) 27-31.
- [19] Q.G. Yan, T.H. Wu, W.Z. Weng, H. Toghiani, R.K. Toghiani, H.L. Wan, C.U. Pittman Ir., I. Catal. 226 (2004) 247-259.
- [20] D. San-José-Alonso, J. Juan-Juan, M.J. Illán-Gómez, M.C. Román-Martínez, Appl. Catal. A: Gen. 371 (2009) 54-59.
- [21] W. Wang, W. Zhou, R. Ran, R. Cai, Z.P. Shao, Electrochem. Commun. 11 (2009) 194-197.
- [22] W. Wang, C. Su, Y.Z. Wu, R. Ran, Z.P. Shao, J. Power Sources 195 (2010) 402-411
- [23] S.B. Wang, G.Q. (Max) Lu, J. Chem. Technol. Biotechnol. 75 (2000) 589-595.
- [24] Q. Zhuang, Y.N. Qin, L. Chang, Appl. Catal. 70 (1991) 1-8.
- [25] S.B. Wang, G.Q. (Max) Lu, Appl. Catal. B: Environ. 19 (1998) 267-277.
- [26] S. Natesakhawat, R.B. Watson, X.Q. Wang, U.S. Ozkan, J. Catal. 234 (2005) 496-508
- [27] N. Laosiripojana, W. Sutthisripok, S. Assabumrungrat, Chem. Eng. J. 112 (2005) 13-22.
- [28] L.Y. Mo, X.M. Zheng, Q.S. Jing, H. Lou, J.H. Fei, Energy Fuels 19 (2005) 49-53. [29] S. Natesakhawat, O. Oktar, U.S. Ozkan, J. Mol. Catal. A: Chem. 241 (2005)
- 133-146.
- [30] J. Gao, Z.Y. Hou, J.Z. Guo, Y.H. Zhu, X.M. Zheng, Catal. Today 131 (2008) 278-284. R.Q. Yang, C. Xing, C.X. Lv, L. Shi, N. Tsubaki, Appl. Catal. A: Gen. 385 (2010) [31]
- 92-100. [32] W. Wang, R. Ran, Z.P. Shao, J. Power Sources 196 (2011) 90-97.
- Z.P. W. Wang. R. Ran. Shao. [33] Int. J. Hydrogen Energy, doi:10.1016/j.ijhydene.2010.09.048, in press.
- [34] H.X. Gu, R. Ran, W. Zhou, Z.P. Shao, J. Power Sources 172 (2007) 704-712.
- [35] W.Q. Zheng, J. Zhang, Q.J. Ge, H.Y. Xu, W.Z. Li, Appl. Catal. B: Environ. 80 (2008) 98-105
- [36] X.Y. Chen, Y. Liu, G.X. Niu, Z.X. Yang, M.Y. Bian, A.D. He, Appl. Catal. A: Gen. 205 (2001) 159-172.
- [37] L.P. Haack, C.R. Peters, J.E. deVries, K. Otto, Appl. Catal. A: Gen. 87 (1992) 103 - 114.
- [38] H.S. Roh, K.W. Jun. Catal. Surv. Asia 12 (2008) 239-252.
- [39] J.Z. Guo, Z.Y. Hou, J. Gao, X.M. Zheng, Fuel 87 (2008) 1348-1354.
- [40] S.D. Robertson, B.D. McNicol, H. De Bass, S.C. Kloet, I.W. Jenkins, J. Catal, 37 (1975) 424 - 431
- [41] V.R. Choudhary, A.M. Rajput, B. Prabhakar, A.S. Mamman, Fuel 77 (1998) 1803-1807
- [42] W. Wang, S.M. Stagg-Williams, F.B. Noronha, L.V. Mattos, F.B. Passos, Catal. Today 98 (2004) 553-563.
- [43] M.M.V.M. Souza, M. Schmal, Appl. Catal. A: Gen. 281 (2005) 19-24.
- [44] Q.S. Jing, X.M. Zheng, Energy 31 (2006) 2184–2192.
 [45] Y. Liu, F.Y. Huang, J.M. Li, W.Z. Weng, C.R. Luo, M.L. Wang, W.S. Xia, C.J. Huang, H.L. Wan, J. Catal. 256 (2008) 192-203.
- [46] C.E. Daza, C.R. Cabrera, S. Moreno, R. Molina, Appl. Catal. A: Gen. 378 (2010) 125-133
- [47] A. Monzon, G. Lolli, S. Cosma, S.B. Mohamed, D.E. Resasco, J. Nanosci. Nanotechnol. 8 (2008) 6141-6152.
- F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53 (1970) 1126-1130. [48]
- [49] A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, J.M.D. Tascón, Carbon 32 (1994) 1523-1532.
- [50] P. Lespade, A. Marchand, M. Couzi, F. Cruege, Carbon 22 (1984) 375-385.
- [51] Y.X. Zhao, F. Wei, Y. Yu, AIChE J. 54 (2008) 750-755.
- [52] S.B. Tang, F.L. Qiu, S.J. Lu, Catal. Today 24 (1995) 253-255.
- [53] W.G. Schlaffer, C.Z. Morgan, J.N. Wilson, J. Phys. Chem. 61 (1957) 714-722.
- [54] M. Pijolat, M. Dauzat, M. Soustelle, Solid State Ionics 50 (1992) 31-39.
- [55] H.C. Yao, Y.F.Y. Yao, J. Catal. 86 (1984) 254-265.
- [56] J. Soria, J.M. Coronado, J.C. Conesa, J. Chem. Soc., Faraday Trans. 92 (1996) 1619-1626.
- [57] C. Morterra, V. Bolis, G. Magnacca, J. Chem. Soc., Faraday Trans. 92 (1996) 1991-1999.